Читать онлайн книгу "Вирус безумия. Бесогон. Книга двенадцатая"

Вирус безумия. Бесогон. Книга двенадцатая
Алексей Тихомиров


Вирусы, всеобщая принудительная вакцинация, экономический кризис и мировая мафия, противостояние России и НАТО… Об этом и не только пойдёт речь в данной книге. Книга содержит нецензурную брань.





Вирус безумия

Бесогон. Книга двенадцатая



Алексей Тихомиров



© Алексей Тихомиров, 2022



ISBN 978-5-0055-9514-0

Создано в интеллектуальной издательской системе Ridero




Введение


Что из себя представляют вирусы? + Вирусы настолько малы, что проходят через мельчайшие поры фарфоровых фильтров, которые, как установил еще великий Пастер, отделяют живое от неживого. Через такие фильтры не проникают даже самые маленькие микробы. + Могут ли вирусы размножаться? Да, могут, хотя и с обязательной оговоркой – если только им удастся попасть внутрь живой клетки. + Какое же место в природе занимают эти мельчайшие создания? Для наглядности можно сопоставить длину некоторых живых существ: кит – 30 метров, мышь – 5 сантиметров, амеба – 50 микрон, вирус полиомиелита – 27 – 29 миллимикрон. Таким образом, вирус полиомиелита примерно в миллиард раз меньше кита! Ничтожные размеры вирусов позволили некоторым ученым вообще усомниться в их принадлежности к живым существам. Однако большинство вирусологов согласиться с этим не могло. Они знали, что вирусы проникают внутрь живых клеток, активно там размножаются и производят новое потомство. Именно благодаря этой способности размножаться вирусы были отнесены к живым существам.

Микробы размножаются на искусственных питательных средах. Достаточно внести в стерильный флакон с питательным бульоном небольшую капельку взвеси тех или иных микроорганизмов, как уже через несколько часов бульон помутнеет: под микроскопом можно будет обнаружить тысячи и тысячи новых микроорганизмов. А вот вирусы ни в одной, даже самой высококачественной, питательной среде размножаться не могут. Даже если эта среда содержит весь необходимый для жизни набор аминокислот, витаминов, солей. В этом радикальное отличие вирусов от микробов. Вирусу нужна полноценная живая клетка, и лишь в ней может он размножаться, используя уже готовый обмен веществ клетки. + Микробы способны в течение длительного времени жить или просто сохраняться, чтобы ожить в будущем, в естественных условиях: в земле, в воде, на поверхности любых предметов, например, на коже человека. Для них необходим минимум питательных веществ, а для возбудителя холеры достаточно простой воды в любом водоеме.

Вирусы же вне живых клеток сохраняются только непродолжительное время, лучше на холоде и гораздо хуже в тепле. Если летом на ярком солнечном свету вирусы погибают очень быстро и даже при комнатной температуре переживают максимум полчаса-час, то на арктическом морозе, под толщами льда и снега они способны сохраняться многие годы. Факты, подтвержденные тысячами и тысячами научных наблюдений, свидетельствовали, что вне живого организма вирусы не размножаются. Отсутствовали аналогии между вирусными заболеваниями и эпидемиями брюшного тифа, вызванными зараженным молоком, или вспышками ботулизма, связанными с употреблением испорченных консервированных продуктов. Вирус должен был обязательно попасть (как правило, достаточно быстро) из живых клеток одного существа в новые чувствительные клетки другого существа. + При любом инфекционном процессе, вызванном вирусами, о болезни следует думать как о чем-то, что один человек получил от другого человека, одно животное от другого животного. Все симптомы болезни, которые вирус вызывает у зараженного человека, связаны с вовлечением в инфекционный процесс тех или иных групп клеток, чувствительных к вирусу и способных поддержать его размножение.

Вирусы, вызывающие обычную простуду, размножаются, как правило, в клетках верхнего дыхательного тракта. В результате начинается насморк и кашель. Вирус полиомиелита попадает в организм человека через рот и размножается исключительно в клетках тонкого кишечника. Оттуда проникает в нервную систему, где и поражает клетки, ведающие двигательными функциями мышц. В результате развивается паралич ног, рук и даже дыхательной мускулатуры. + Есть много болезней, для возбудителей которых естественным хозяином является любое другое животное, но не человек. Наиболее яркий пример – величайшие эпидемии «черной смерти» в средние века, вызванные микробами чумы, которые выживали в течение столетий, паразитируя на полевых мышах в Центральной Азии. Когда представлялась возможность, чумные микробы поселялись в организме черной домашней крысы проникали в жилища людей и заражали их. + В противоположность микробам для каждого вируса существует свой вполне постоянный и достаточно ограниченный круг животных, растений, насекомых и даже микробов, которых он поражает. Заражая живое существо, вирусы размножаются только в клетках определенных тканей или органов, а не в любом участке организма.

На помощь вирусологам однажды пришёл электронный микроскоп, теорию устройства которого и первые образцы создают в конце 30-х годов. Так как длина волны электронного луча равна всего лишь 0,01 ангстрема (ангстрем равен 0,1 нанометра), то есть в 500 тысяч раз меньше, чем у видимого света, с помощью электронного микроскопа можно рассмотреть даже небольшие белковые молекулы. Электронный микроскоп в его современных модификациях – это весьма точный и сложный механизм, стоимость которого измеряется десятками тысяч рублей. Несмотря на это, все лаборатории, изучающие структуру вирусов, имеют его на вооружении. С помощью электронного микроскопа ученым удается рассмотреть большинство известных вирусов, просвечивая их пучком электронов. + Сканирующий электронный микроскоп, принцип работы которого основан на том, что пучок электронов не проходит через предмет насквозь, а, падая на его поверхность под определенным углом, отражается от нее и после необходимого увеличения изображения попадает на флюоресцирующий экран, позволяет увидеть даже объемное изображение вирусов, сделать фотографии, портреты вирусов с деталями структуры их наружной поверхности.

Исследование морфологии (формы и строения) позволило разделить все известные сейчас вирусы на три группы. Раньше всего были изучены крупные вирусы. Их размер 200—300 нанометров. К таким «великанам» относятся вирусы оспы человека и животных, вирус эктромелии белых мышей (это заболевание часто встречается в питомниках, где разводят столь необходимых науке лабораторных животных). + Ко второй группе относят вирусы, средняя величина которых от 50 до 150 нанометров. К ним принадлежит большинство вирусов растений, бактериофаги (вирусы, уничтожающие микробов), а также вирусы кори, свинки, гриппа. Сюда же относятся возбудители многих заболеваний верхних дыхательных путей, которые обычно называют «простудными», но которые на самом деле вызываются многочисленными вирусами. + Третья группа состоит из мельчайших вирусов (по величине они ненамного больше крупных белковых молекул) с размером частиц от 20 до 30 нанометров. В этой группе находятся вирусы полиомиелита, желтой лихорадки, энцефалитов и многие возбудители тропических лихорадок. + Ученые подсчитали, что если диаметр крупных вирусов превышает диаметр мелких всего лишь в 30 раз, то разница в их объеме составляет более 25 тысяч раз.

Подавляющая масса вирусных частиц (вирионов), которые поражают человека и животных, имеет форму шара, а у вирусов растений – вытянутый цилиндр. Хотя длина цилиндра вируса табачной мозаики достигает 350 нанометров, в оптическом микроскопе он все же невидим: поперечник цилиндра не превышает 15 нанометров, а такие величины в оптическом микроскопе разглядеть нельзя. + Однако самые существенные различия между вирусами и микробами обнаружили, когда вирусы разобрали, если можно так выразиться, на составные части. Наука создала за последние годы много новых ферментов и реактивов, чтобы с более чем ювелирной точностью отделить друг от друга различные компоненты тела вируса или микробной клетки, получить их в чистом виде и достаточно точно изучить. Трудно даже вообразить себе эту точность, при которой ученые оперируют величинами, измеряемыми миллионными долями микрона! + Вирусы под различными углами просвечивали рентгеновскими лучами, измеряли величину электромагнитных колебаний их атомов, разделяли вирусные белки и нуклеиновые кислоты, определяли последовательность аминокислот в белке. Анализ всех фактов проводили с помощью сложнейших электронно-вычислительных машин за считанные дни, а не за долгие годы, как это делалось еще совсем недавно. И вот в результате такого скрупулезного исследования вирусов удалось установить совершенно неожиданный факт: у них нет никакого сходства с клеточной организацией, типичной для всех существующих на земле организмов!

В центре каждого вириона, образуя его сердцевину, лежит нуклеиновая кислота. Снаружи располагаются белковые молекулы, образующие своего рода защитное покрытие, так называемый «чехол». Они состоят из 20 хорошо известных аминокислот, из которых сотканы белковые молекулы всех живущих на земле существ. + Чтобы определить вес целой вирусной частицы или отдельных ее компонентов, используют ультрацентрифугу. Отличается она от обычной центрифуги тем, что здесь развивается скорость вращения порядка 100 тысяч оборотов в минуту и создается сила тяжести, превышающая земное притяжение в несколько сот тысяч раз… За единицу измерения веса приняли дальтон – вес самого маленького атома в природе – атома водорода. Оказалось, что у мелкого вируса полиомиелита вес вирусной РНК, являющейся геномом, хранителем наследственной информации вируса, не превышает 1—2 миллионов дальтон, у крупного вируса оспы достигает 200 миллионов. А средний вес генома бактериальной клетки достигает 1—10 биллионов дальтон.

Аминокислоты вирусного чехла соединены друг с другом последовательно в различных сочетаниях и образуют линейные цепочечные структуры (полипептиды). Их молекулярный вес варьирует от нескольких тысяч до сотен тысяч дальтон. Так, наружный слой вируса табачной мозаики образует 2200 «кирпичиков» белка совершенно идентичного состава, которые группируются в правильном порядке. + Структура различных вирусов отличается большей или меньшей степенью сложности. Если наиболее простые мелкие вирусы состоят только из обособленной молекулы РНК и белка, то более крупные обладают и наружной оболочкой, своего рода «упаковочным конвертом», в состав которого входят не только белки, но углеводы и липиды (жировые вещества). + Наиболее сложно устроены бактериофаги («пожиратели бактерий»). По форме они напоминают гимнастическую булаву. В их шаровидной головке помещена нуклеиновая кислота. Длинный отросток булавы представляет собой полый чехол, построенный из молекул белка. С помощью этого отростка бактериофаг прикрепляется к оболочке или к жгутикам бактерий, внедряет конец отростка в цитоплазму микроба и впрыскивает, как через шприц, свою нуклеиновую кислоту.

Белки, входящие в состав любого вируса, отличаются по структуре от белков поражаемых клеток. Каждый белок является антигеном, то есть веществом, способным вызвать образование антител. Разница в строении молекул вирусного белка и клеточного ведет к тому, что при введении животному эти белки вызывают образование совершенно разных антител, реагирующих только со своими антигенами. Антитела против клеточных белков соединяются только с ними и не соединяются с вирусами. Антитела против вируса не реагируют с белками клетки. Именно благодаря таким различиям специальные лабораторные приемы позволяют распознать присутствие вируса внутри зараженной клетки. + Если у вирусов есть только нуклеиновая кислота и немного защитного белка, то как же они размножаются? В этом главная загадка вирусов. Полное отсутствие ферментов, необходимых для синтеза белков и нуклеиновых кислот! А потомство воспроизводится с необычайной быстротой. + Известно, что в клетках растений или животных наследственные функции несет дезоксирибонуклеиновая кислота (ДНК), а рибонуклеиновые кислоты (РНК) выполняют чисто вспомогательные. Однако у многих вирусов ДНК вообще отсутствует, геном состоит из молекулы РНК, причем не только в однонитевой, но и в двунитевой форме, чего нет у других живых существ на земле.

Простота организации вируса подтверждается небольшим количеством генетического вещества, а следовательно, и заключенного в нем объема генетической информации по сравнению с клеткой-хозяином, в которой вирус размножается и которую подчиняет своим потребностям. + Создается явное противоречие: вирус, имея объем генетической информации, в тысячу раз меньший, чем сложно организованная клетка, никогда не оказывается в подчиненном положении, а, наоборот, почти всегда побеждает. Это противоречит всем известным канонам. Понять это можно, лишь предположив, что у вирусов есть какие-то решающие преимущества перед клетками, позволяющие легко их завоевывать и обращать в своеобразное рабство. + До открытия мира вирусов длительные наблюдения за различными микробами и любыми одноклеточными организмами позволили установить, что все они размножаются совершенно одинаково: путем непрерывного, обычно прямого деления, когда из одной клетки образуются две, из них – четыре и так далее. + В течение многих десятилетий процесс размножения вирусов объясняли по аналогии с привычным и так хорошо изученным размножением у бактерий. Непонятной оставалась лишь огромная быстрота, с которой он идет.

Решением этого интересного вопроса занялись многие ведущие вирусологи мира. Вначале установили, что вирион не разделяется на две дочерние частицы, как это происходит со всеми известными на земле клеточными формами. Далее выяснилось, что вирусы вообще не делятся и что у них есть свой особый механизм размножения, отличный от всех остальных живых существ. Оказалось, что каждая вирусная частица сразу же «рождает» потомство в количестве от ста до тысячи и более новых вирионов. + Все начинается с избирательной адсорбции вируса на особых рецепторах, расположенных на поверхности клеток. После этого некоторые вирусы, обладающие специальным ферментом проникновения, способным растворить клеточную оболочку (например, нейраминидаза вируса гриппа), внедряются внутрь, другие же клетка поглощает сама, приняв их за вполне съедобный белок. + Проникнув внутрь клетки, вирус исчезает в прямом смысле этого слова, и никакими самыми чувствительными методами не удается обнаружить в клетке ни цельной частицы, ни отдельных ее компонентов. Ученые даже назвали эту стадию размножения вируса эклипсом, что соответствует русскому слову «затмение».

Разгадка этого парадокса получена совсем недавно. Оказалось, что в стадии эклипса вирусная частица распадается на белок и нуклеиновую кислоту. Такое «раздевание» вируса, как это ни странно, производит сама клетка с помощью ферментов. Они реагируют на проникший вирус как на кусочек белковой пищи и стараются его растворить и переварить. + Все основные события последующих часов, определяющие сущность процесса размножения вирусов, связаны не с белковым компонентом вируса, а с нуклеиновой кислотой. Именно она определяет весь ход дальнейшего размножения вирусов. В нормальных условиях жизнь клетки регулируется деятельностью ее собственных нуклеиновых кислот, руководящих синтезом клеточных белков и других химических соединений. В хромосомах клетки содержатся многочисленные молекулы ДНК. Длинная молекула этой кислоты по своему строению несколько похожа на велосипедную цепь, закрученную в пространстве в виде спирали. Наследственная информация клетки о структуре всех без исключения белков, входящих в ее состав, записана в огромной полимерной нити, в двойной спирали молекулы ДНК. Она хранится в клеточном ядре.

Каждое звено цепочки ДНК – своеобразная ячейка, группа из трех генов, которая называется «оперон», так как она производит операцию выдачи заложенной в ней информации. Ведь каждый ген служит носителем какой-то определенной наследственной информации. В одном из генов содержится информация о структуре и последовательности подбора молекулярных кирпичиков для синтеза строго определенной белковой молекулы, или молекулы фермента, или молекулы новой нуклеиновой кислоты. Два других играют роли включателя и выключателя процесса считывания информации, заложенной в первом гене. + В нужный момент оперон получает импульс, поступивший от включающего гена-оператора. Происходит выдача информации, заложенной в ячейке и необходимой для синтеза новых молекул белка или нуклеиновой кислоты. С участков ДНК снимаются копии, чертежи поменьше. Это молекулы информационных РНК (иРНК). Они двигаются из ядра в цитоплазму, где находятся рибосомы – своеобразные станки по производству белка. В каждой клетке много тысяч рибосом. Диаметры каждой 200—300 ангстрем, а молекулярный вес 2—5 миллионов дальтон.

Из нескольких рибосом информационная РНК. формирует так называемый полисомный комплекс, своеобразную матрицу, на которой, как в типографии с набранного шрифта, начинается отпечатывание (репликация) новых копий белковых молекул. Транспортные РНК (тРНК) подвозят к рибосоме строительные блоки – аминокислоты. Находящиеся на рибосомах иРНК (они крупнее тРНК) служат шаблоном, определяющим последовательность стыковки друг за другом каждой из привезенных аминокислот. Каждая тРНК присоединяется к определенному участку иРНК. Так вдоль всей молекулы иРНК в соответствии с заложенным в ней кодом выстраиваются молекулы тРНК с аминокислотами. В рибосоме эти аминокислотные блоки сшиваются друг с другом, их цепочка полимеризуется в молекулу белка. + Одна молекула белка собирается на рибосоме за 20—30 секунд. Когда синтезируется достаточное количество таких молекул, в процесс вступает ген-регулятор. Он дает сигнал, участок ДНК, ведающий синтезом одного из белков, выключается и не функционирует до тех пор, пока в клетке опять не возникнет потребность в этом белке.

Следовательно, в хромосоме здоровой клетки все участки ДНК работают по принципу «включено» – «выключено», непрестанно регулируя количество и набор синтезируемых белков, необходимых клетке в каждый момент ее жизнедеятельности. Основа всех нормальных процессов клеточного синтеза заключается в том, что они контролируются и направляются информацией, передаваемой как бы по конвейеру от ядерной ДНК к исполнительной (информационной) РНК клеток. + Но вот в клетку проникла вирусная нуклеиновая кислота. Она сразу же берет весь основной обмен клетки, все процессы синтеза под свой контроль. + Враг захватил завод, который в мирное время делал тракторы. Используя те же станки, оборудование и сырьевые ресурсы, враги заставляют рабочих завода делать танки для своей армии, чтобы захватывать все новые и новые города. Внутри зараженной клетки происходит, по существу, аналогичный процесс. Вирусная нуклеиновая кислота ведет себя в клетке как агрессор. Информация, закодированная в вирусной РНК (или ДНК), служит для клетки более обязательным и строгим «приказом», чем усилия собственных нуклеиновых кислот сохранять на каком-то уровне нормальную физиологическую деятельность организма. В течение многих часов, а иногда и дней после зараженная вирусная нуклеиновая кислота направляет все строительные запасы захваченной клетки на создание сотен и тысяч новых вирусных частиц.

Клетка превращается в фабрику по сборке своих убийц. Именно убийц, потому что вирусное потомство стремится выйти наружу и разрывает или расплавляет при этом клеточную оболочку, наступает гибель клетки-хозяина. + Вирус использует строительные ресурсы и ферментные системы клетки для своих нужд, а затем уничтожает ее, чтобы на следующем этапе инфекции заразить, а следовательно, и уничтожить сотни и даже тысячи новых клеток. + После заражения клеток различными вирусами в первую очередь формируется особый белок (ученые назвали его белок-ингибитор), подавляющий нормальное функционирование клеточных ДНК. Он прекращает передачу информации, необходимой для нормальных клеточных синтетических процессов. + Примерно в это же время формируется фермент, разрывающий полисомные комплексы, на которых шла сборка клеточных белков. Теперь уже клетка собственных белков не производит. Кроме того, и это является самым важным, синтезируется фермент полимераза (другое название – синтетаза), необходимый для снятия копий с внедрившейся в клетку вирусной РНК.

Для дальнейшей судьбы вируса именно стадия образования полимеразы является жизненно необходимой, потому что копии РНК будут использованы в качестве начинки при сборке новых вирионов. Синтезированные в клетке специфические вирусные РНК служат также матрицами, на которых строятся белковые части вириона – его капсомеры. + Предполагают, что молекулы нуклеиновой кислоты для будущих вирусных частиц строятся в ядре зараженной клетки, а белковые футляры – в цитоплазме. Затем происходит формирование «полного», то есть зрелого, вируса. На внутренней поверхности клеточной оболочки завершается объединение вирусной нуклеиновой кислоты (РНК или ДНК) с белковым чехлом. Этот процесс идет одновременно во многих участках и заканчивается созреванием большой массы высокозаразных частиц. + Иногда в клетках вырабатывается больше молекул одного биополимера, чем другого. Если в зараженной клетке сформировался избыток вирусного белка, его молекулы образуют оболочку вируса, не начиненную РНК (которой для этого просто не хватило). Эти структуры, называемые «неполным» вирусом, выходят из клетки, и их можно увидеть в электронном микроскопе. Они похожи на бублик с дыркой посредине. Естественно, что такой «неполный» вирус не обладает инфекционными свойствами, которые полностью зависят только от РНК. + Итак, инфекционные свойства вируса связаны с его нуклеиновой кислотой. + А какова же роль белка? Он защищает нуклеиновую кислоту от внешних воздействий и помогает вирусу внедриться в клетку…

В естественных условиях «голая» РНК никогда не проникает в клетки извне, через клеточную оболочку. Нуклеиновые кислоты всегда попадают сюда только в составе цельной вирусной частицы, которая освобождает вирусную РНК (или ДНК) лишь внутри зараженной клетки. Хотя вирусные нуклеиновые кислоты и играют ведущую роль в размножении вирусов, однако они не обладают способностью самостоятельно переходить от клетки к клетке. + Некоторые вирусологи ошибочно рассматривают процесс размножения вируса как самостоятельную работу клетки, которая «продуцирует вирусные частицы». В действительности от начала и до конца этот процесс – результат жизнедеятельности вируса. Он осуществляет основную функцию паразита – репродукцию, то есть воспроизводство, новых потомков. Абсолютно чуждые клетке молекулы вирусных нуклеиновых кислот и белка воссоздаются в виде сотен новых копий в ее ядре и в цитоплазме под командой вируса, но за счет строительных материалов и синтетических систем клетки.




Часть 1. Всеобщая вакцинация





Введение


Как же организм животного или человека защищается от вируса, с которым никогда раньше не встречался? Первый этап, как правило, заканчивается гибелью зараженных клеток. В результате образуется несколько тысяч новых вирусов, затем миллион, миллиард, а потом организм должен погибнуть. + Но в реальных условиях этого не происходит. Заболевший обычно выздоравливает. + Действительно, даже при тяжелейших вирусных инфекциях, как оспа или клещевой энцефалит, погибают не все заразившиеся люди, а такие болезни, как свинка, корь, грипп, для большинства оканчиваются благополучно. + Обороняясь от возбудителей заразных болезней, организм вырабатывает, как известно, высокоэффективные защитные вещества – антитела. Против каждого возбудителя, будь то бактерия или вирус, образуются свои антитела. Они соединяются только со «своим» возбудителем и нейтрализуют его активность, совершенно не действуя на все остальные. + Каждому этапу развития любой науки, в том числе и медицины, соответствует определенный уровень знаний. Поэтому многие первоначальные положения, своего рода аксиомы вирусологии основывались на знаниях, полученных ранее микробиологами, изучавшими противомикробный иммунитет. Вот почему вирусологи довольно долго считали, что выздоровление обеспечивается только специфическим иммунитетом, его антителами, которые образуются в ответ на проникший в организм и размножающийся там вирус. Однако существовало определенное противоречие, на которое долго старались не обращать внимания, хотя оно буквально бросалось в глаза.

Совершенно непонятным оказывался такой хорошо известный факт: антитела образуются и поступают в кровь через несколько дней после заражения. Именно такой срок требуется организму, чтобы ответить на агрессию и выработать необходимые количества защитных антител, способных связать вирус. Но, ведь зная необычайно высокий темп репродукции вируса в зараженных клетках, легко можно подсчитать, что в первые два-три дня болезни должны образовываться неисчислимые полчища новых вирусов. Следовательно, антитела просто-напросто опоздают и не смогут нейтрализовать инфекцию! + Кроме того, ученые показали, что антитела действуют, только когда вирус находится вне клетки: в крови, в лимфе, – и не способны проникать внутрь клеток, зараженных вирусом, хотя и препятствуют внедрению вирусов в чувствительную ткань. + Очевидно, есть какие-то еще неизвестные способы защиты, которые именно в первые часы после заражения должны, во-первых, ограничить размножение вируса внутри клетки, а затем и воспрепятствовать заражению новых клеток, как бы связать вирус по рукам и ногам до подхода основной армии защиты – антител.

Можно думать, что уже на самых ранних этапах эволюции живых существ на поверхности нашей планеты началась неравная борьба между клеточными организмами и мельчайшими их врагами – вирусами. Учитывая необычайно быстрый темп размножения вируса, такая борьба должна была бы окончиться их несомненной победой над более сложно организованными многоклеточными организмами. Чтобы как-то защитить себя от бурно размножающихся противников, позвоночные животные многие и многие тысячи лет назад выработали универсальный механизм защиты от вирусной агрессии. Эта дополнительная (но против вирусной инфекции, может быть, и основная) защита проявляется и действует на уровне клеток. Она резко подавляет темп размножения вирусов, замедляет скорость развития инфекционного процесса… Другой защитный эффект может объясняться простой конкуренцией между двумя соперниками-вирусами. Например, когда первый по порядку «несмертельный» вирус отнимает у второго «злокачественного» вируса питательные ресурсы зараженного организма, что заканчивается плохим размножением смертельного вируса, введенного во вторую очередь.

Вскоре после того, как вирус прикрепится к поверхности клеток, они «распознают» в его лице не только полезный питательный белок, но и своего смертельного врага. Вот это-то раннее «распознавание» и позволяет организму достаточно быстро подготовить эффективную оборону, чтобы подавить вирусную инфекцию или хотя бы ограничить ее уже в первые часы после начала болезни. + Исследование тончайших процессов, происходящих на молекулярном уровне внутри живых клеток, потребовало довольно длительного времени. И если интерферон был открыт в Англии, то объяснить, как он образуется, удалось в Америке. + Почему в зараженных вирусами клетках образуется интерферон и как это происходит? Вдумайтесь! Всего два вопроса, но каких важных! Если на них ответить, откроется путь к пониманию главной задачи: способу борьбы с любыми вирусными инфекциями. + Как только вирус проникает в цитоплазму клетки и начинает там «раздеваться», сбрасывая белковый чехол и выделяя нуклеиновую кислоту, клетка воспринимает эти действия за сигнал тревоги, оповещающий о вторжении смертельного врага, против которого немедленно надо готовить активнейшее оружие.

Начало синтеза интерферона совпадает с периодом, когда в зараженной клетке вирусная РНК становится матрицей, с которой печатаются новые РНК. Формирующиеся в ходе этого процесса двунитевые РНК и служат стимулом для образования интерферона. А происходит это потому, что в здоровых клетках никогда не бывает двунитевых РНК, а только однонитевые. Двунитевая форма РНК чужеродна для клетки, а это как раз и необходимо, чтобы подать сигнал опасности. Таков был ответ на вопрос «почему». + Как только клетка получает сигнал опасности, немедленно включается специальный ген-оператор. Начинается синтез информационной РНК, а затем на ее матрице в полисомах клетки происходит сборка относительно простых и легких по весу белковых молекул, которые мы называем интерфероном. В 1974 году ученые установили, что ДНК, отвечающие за образование интерферона, расположены у человека только в хромосомах №2 и 5. + Период образования многих и многих тысяч молекул интерферона в зараженной клетке обычно занимает от двух до шести часов. Значит, он намного короче, чем период репродукции вирусного потомства. А раз так, клетка успевает опередить агрессора и построить оружие раньше, чем масса родившихся вирусов выйдет и набросится на новые беззащитные еще клетки. + Небольшая молекула интерферона может легко проходить через клеточные оболочки. Пока в зараженной клетке идет размножение вируса, интерферон уже успевает образоваться, выйти из этой зараженной клетки в кровь, в лимфу, в окружающее пространство и проникнуть в другие клетки. Хотя к синтезу интерферона способны многие группы клеток соединительной и эпителиальной ткани, особенно активно выполняют эту работу клетки белой крови (лимфоциты).

По выраженности лечебного действия с интерфероном не могут конкурировать даже лучшие антибиотики. Исследователи рассчитали, что для лечения тяжелого гриппа вполне достаточно ввести больному в несколько приемов всего один миллиграмм чистого интерферона. Для лечения же бактериальных инфекционных заболеваний применяют, как правило, ежедневно по нескольку граммов того или иного антибиотика. + Каким же образом действует интерферон на вирус? Может ли он соединяться с вирусом и нейтрализовать его, как это делают антитела? Нет, инферферон с вирусом не соединяется, и в этом одно из его решающих отличий от антител. Но, может быть, интерферон не дает вирусу адсорбироваться на клеточной оболочке, или как-то мешает ему проникнуть внутрь клетки, или, действуя на вирусную нуклеиновую кислоту, инактивирует ее? + Многие ученые в разных странах мира обнаружили, что интерферон наделен необычайно широким «спектром» противовирусной активности: он подавляет размножение большинства известных вирусов. Препятствует размножению вируса оспы в коже, вируса гриппа в легких, вируса энцефалита в мозгу, вируса лейкоза в костном мозге или в лейкоцитах крови. + Механизм такого бесконечного универсализма должен быть единым, направленным на какой-то общий этап размножения всех этих паразитов. В этом огромное преимущество интерферона перед антителами, которые соединяются, а затем нейтрализуют строго специфически лишь тот вирус, который вызвал их образование (например, антитела против вируса гриппа типа А не действуют даже на вирус гриппа типа В).

Уже первые поиски установили, что непосредственного воздействия на вирус интерферон не оказывает. + В ядрах клеток человека, в хромосоме №21, находится специальная группа генов (специфический участок ДНК, с которым соединяется молекула интерферона, как только она проникает в клетку), отвечающая за этот процесс. + Небольшая молекула интерферона способна свободно проходить через клеточные оболочки и, проникая в цитоплазму, воздействовать на синтетический аппарат клетки так, что он становится непригодным для размножения вирусов. Этот механизм коренным образом отличается от действия антител, которые для выполнения своей функции должны обязательно соединиться с вирусами, находящимися вне клетки. Только таким путем антитела препятствуют переходу вируса от зараженной клетки к здоровой. + К сожалению, процессы, происходящие на уровне таких мелких молекул, какой является интерферон, нельзя увидеть. Но тончайшие методы современной вирусологии и генетики позволяют косвенно проследить за ходом этих процессов. + Интерферон как бы пробуждает от спячки группу генов, отвечающих за синтез особых информационных РНК, с помощью которых клетка быстро строит антивирусный белок. Дальше события разворачиваются совершенно необычным образом. Вновь синтезированный антивирусный белок используется клеткой не для нейтрализации самого вируса, а для того, чтобы нарушить так хитро налаженный механизм печатания копий вирусных РНК и сделать невозможным воспроизводство вирусного потомства. Все синтетические процессы, необходимые для нормального функционирования самой клетки, сохраняются.

Каждая молекула антивирусного белка присоединяется к одной из рибосом, слегка изменяя этим ее конфигурацию. Такие рибосомы по-прежнему сохраняют способность соединяться под влиянием информационных РНК в полигамные комплексы и строить новые клеточные белки. Однако если полисома сформируется под воздействием вирусной информационной РНК, то дальнейшей передачи информации не будет и синтеза вирусных белков не произойдет. + Некоторые вирусологи считают, что молекула интерферона или даже отдельные ее фрагменты могут соединяться с рибосомами и делать их непригодными для передачи вирусной информации и синтеза компонентов вирусной частицы. Так или иначе, но после контакта с молекулой интерферона каждая клетка превращается в своеобразную ловушку, куда вирус легко попадает и где он находит свою могилу, не выполнив главной задачи паразита – произвести потомство. + Полезное влияние интерферона зависит от степени болезнетворности, зловредности вируса для организма, а также от общего состояния здоровья человека. Защитный эффект интерферона снижается, если возбудитель вирусной инфекции чрезмерно, разрушителен, токсичен, а человек ослаблен переутомлением, нервными переживаниями, хроническими заболеваниями сердца, печени, легких…

Когда система интерферона не срабатывала, грипп может стать фатальным для больного. И наоборот, можно считать, что благополучный исход вирусной инфекции является результатом активной оборонительной деятельности зараженных клеток, вырабатывающих интерферон, который нарушает синтез новых вирусных частиц и ликвидирует опасность появления и распространения по организму новых генераций вируса… Ученые не только доказали, что одним из факторов, определяющих сопротивляемость организма вирусной инфекции, служит его способность вырабатывать интерферон, но и что у разных людей она неодинакова. Большую роль играют врожденные особенности организма. Около трети населения обладают характерными наследственными чертами, вследствие которых их организм плохо производит интерферон. Зависит эта способность и от возраста: интерферон слабее вырабатывается у детей до двухлетнего возраста, а также у пожилых людей старше 60—65 лет. + Формирование интерферона идет по-разному в зависимости от внешних условий, например, погоды, температуры воздуха, времени года. Зимой или осенью организм медленнее производит интерферон и в меньших количествах, чем в теплое время. Поэтому летом люди гораздо реже страдают от гриппа и других заболеваний верхнего дыхательного тракта.




Вакцинация


В 1996 г. мир отметил 200-летие первой вакцинации (не прививок!), произведенной в 1796 г. английским врачом Эд. Дженнером. Почти 30 лет (!) Дженнер посвятил наблюдениям и изучению явления, когда люди, переболев «коровьей оспой», не заражались натуральной оспой человека. Вакка – от латинского слова vасса – корова, отсюда слово «вакцина». + Взяв содержимое из образовавшихся везикул-пузырьков на пальцах доильщиц коров, Дженнер ввел инокулят восьмилетнему мальчику и… своему сыну (последний факт мало известен даже специалистам). Спустя полтора месяца заразил их натуральной оспой. Дети не заболели. Этим историческим моментом датируется начало вакцинации – прививок с помощью вакцины… + Вакцинно-сывороточное производство развилось особенно интенсивно в XX веке, превратившись в крупные научно-промышленные комплексы и фирмы. А идею Пастера – искусственную аттенуацию (ослабление инфекционных свойств) возбудителя, в модифицированном варианте использовали Кальметт и Герен (А. Cflmette, С. Guerin), создав в 1920 г. живую антибактериальную вакцину ВСС (бацилла Кальметта и Герена) – против туберкулёза, которая также вызывала и продолжает вызывать сомнения и нарекания, ничуть не меньшие, чем другие живые вакцины…

Это – один из мифов о «ликвидации инфекционных болезней с помощью прививок всех подряд». + «Ликвидация» – работа неблагодарная, практически невыполнимая по своей непредсказуемости, да и небезопасная: «Уничтожить и не ждать ответного удара, не подумав, а не займут ли освободившееся место под солнцем другие, куда более агрессивные микробы?» «Занимают», ещё как занимают! – Агрессивные стрептококки, новые штаммы микобактерий туберкулёза, вызывающие туберкулёз костей, суставов, кожи, кишечника, мочеполовой системы – среди «правильно» привитых против туберкулёза вакциной БЦЖ; многоликие гепатиты и вирусы герпеса и т. д. + Конечно же, наиболее жизненной и обладающей высокой научно-практической ценностью представляется формула «ликвидация массовых заболеваний», как и понимали помощь здравоохранению многие эпидемиолога, инфекционисты, педиатры… далёкого прошлого, сокращение заболеваемости до уровня, не представляющего серьёзных проблем для государства. При этом надо постоянно иметь в виду, что основное предназначение вакцин – защита конкретного человекаили группы лиц, восприимчивых к той или иной инфекционной болезни.

У нас и здесь произошла подмена понятий: «защита человека» на «сдерживание эпидемий». Это тоже из области вредных иллюзий, абсолютно ненаучных идей, поскольку сдерживание эпидемий – каждодневная работа санэпидслужб – комплекс противоэпидемических мероприятии со строжайшим соблюдением эпидемиологического надзора, с учетом географических, климатических регионов, в резко изменившихся экологических условиях антропогенных нагрузок на детский организм, а также изменении в микромире – среди возбудителей инфекционных болезней. Нельзя и здесь так беспощадно эксплуатировать исключительно человеческий фактор, превратив всех (!) в искусственно невосприимчивых к возбудителям инфекционных болезней, как бы «усовершенствовав» природу человека… во имя спасения всего человечества (?!). Сколько уж во имя этого усовершенствовано… во вред здоровью человека…! + Более полувека пытаемся ликвидировать дифтерию, что нереально сделать с помощью анатоксина, входящего в состав АКДС и её модификации. Не существует вакцины против дифтерии: «Ликвидация дифтерии невозможна с помощью анатоксина, обеспечивающего выработку напряжённости антитоксического, но не антибактериального иммунитета», – утверждает эпидемиолог, Президент РАМН с соавторами, а также Международная служба по ликвидации инфекционных болезней. + Совершенно не задумываемся мы над тем, как много стало известно за последние 50 лет в области иммунологии, иммунологии инфекционных болезней, экологии человека, в неонатологии и в других областях знаний…

Продолжаем «ликвидировать» путём охвата «всех подряд». В результате имеем «парад инфекций» потому, что «ничего не может быть бесперспективнее, чем объявление о ликвидации той или иной инфекционной болезни путем приказа. В качестве ответа на это неизбежно последует волна очковтирательства… + Какими бы благими намерениями ни руководствовалось врачебное управление города, но прибегать к насильственным мерам недостойно для врачебного сообщества… Мы уверены, что среди русских врачей нельзя было бы найти ни одного, у кого бы поднялась рука для производства в этом случае насильственного укола. + На самом деле, многое не соответствует действительности: не было никаких эпидемий, подобных тем, что отмечались, скажем, в начале XX века, как и не была осуществлена «ликвидация». Ну, а если дело только в прививках, то почему растет туберкулёз, относящийся, как многие другие инфекционные болезни, будто бы к «управляемым прививками»?! + Что можно сказать про авралы и нашествия вакцинаторов на предприятия, фабрики, в институты и другие «организованные учреждения» с прививками против гриппа? Что значит сделать прививку насильно: под угрозой невыплаты стипендии, зарплаты, запрета выписки рецепта на детское питание? Наряду с этим в России иммунопрофилактикой инфекционных болезней продолжают заниматься «сверху» – чиновники-эпидемиологи и санврачи, совершенно не разбирающиеся в иммунологии. А ведь на них возложены совсем другие обязанности…

«Снизу» за охват с «экономическим стимулированием» отвечают участковые педиатры, которые, как показывает практика общения с ними в последние 15 лет, совершенно не знакомы с иммунологическими аспектами инфекционных болезней и никак не связывают инфекционные болезни, как и вакцинологию, с иммунной системой. Представление о прививках у них очень примитивное и абсолютно конкретное: выполнить приказ по охвату – и это всё, как они полагают, что от них требуется. + НАДО СДЕЛАТЬ ТАК, ЧТОБЫ ВРАЧ, ВМЕШИВАЮЩИЙСЯ В ИММУННУЮ СИСТЕМУ, БЫЛ АТТЕСТОВАН ПО ИММУНОЛОГИИ! + Между тем квалификация врачей зачастую невысока, система организации их труда малоэффективна… здравоохранение у нас находится на низком уровне…

Споры вокруг массового применения вакцин не утихают не только в нашей стране. Во многих государствах действуют общественные ассоциации, помогающие решать конфликтные ситуации между чиновниками и родителями, отказывающимися от массово-календарных прививок своих детей. В ассоциациях работают специалисты разных дисциплин: микробиологи (вирусологи и бактериологи), иммунологи, педиатры, генетики, психологи, а также юристы, педагоги и молодые родители. Такие организации помогают родителям, подросткам и взрослому населению в принятии обоснованного, грамотного решения об осуществлении вакцинации или об отказе от неё, а также информируют о фактической санитарно-эпидемиологической обстановке в конкретном регионе и организованных учреждениях: в школах, детских садах и т. д. + При этом следует подчеркнуть, что чиновники, тем более связанные с фирмами по производству и реализации вакцин, везде одинаковые… + Принцип «ВСЕХ ПОДРЯД» ПРИ ИСПОЛЬЗОВАНИИ ЛЮБОГО ЛЕКАРСТВЕННОГО СРЕДСТВА НЕ ИМЕЕТ ПРАВА НА СУЩЕСТВОВАНИЕ.

В случаях с прививками это положение приобретает особую силу. Во-первых, потому, что вакцины – лекарственные биопрепараты. Во-вторых, это препараты, используемые с целью профилактики, не лечения! Следовательно, гарантии здоровья предусматривают введение их в здоровый организм ребенка. В-третьих, вакцины всегда считались «неизбежно небезопасными». В-четвёртых, напомню из классической литературы по инфекционным болезням и по эпидемиологии, что популяция человека гетерогенна по своей восприимчивости или невосприимчивости к вирусам, бактериям и другим патогенным факторам. + Если бы все мы были одинаково чувствительны к туберкулезу, оспе, полиомиелиту, дифтерии и другим инфекционным болезням, то человечество вымерло бы давным-давно. + Вакцинам всего-то 200 лет, а человечеству?! + Иллюзия, что все инфекционные агенты будут побеждены, стоит лишь провакцинировать «всех подряд», т. е. одна проблема – одно решение, порождает преступный подход к этому профилактическому медицинскому вмешательству в природу человека. Однако именно такая система «из-за удобства с организационной точки зрения» продолжает пропагандироваться армией врачей и чиновников от здравоохранения, в той или иной форме причастных к прививкам, но не к вакцинологии с основами иммунологии.

Нельзя «ликвидировать» ни одну инфекционную болезнь «только с помощью прививок». Мол, привьёшься и будешь в безопасности для себя и для всех окружающих. Мало сказать – миф, это – утопия об очередном «всеобщем счастье» в светлом безынфекционном рае, достигнутом якобы только с помощью вакцин. Действительно, какое-то «дьявольское упорство», дьявольское наваждение: без прививки ребёнок вроде бы неполноценный, хотя на самом деле – совсем наоборот. + Многое из того, что приводится в монографии, станет откровением не только для специалистов разных дисциплин, кому действительно небезразлично здоровье российских детей, но и для трёх-четырёх поколений педиатров-вакцинаторов, которые обязаны не только подчиняться приказам Минздрава, но, прежде всего, читать, думать и анализировать. + Вообще обращает на себя внимание отсутствие сколько-нибудь надежной статистики инфекционных заболеваний. + Нет ничего неожиданного и в том, что отсутствует иммунитет к дифтерии у взрослого населения. Противодифтерийный иммунитет – факт давно известный – является отражением естественного «проэпидемичивания» населения. При дифтерии, в случае циркуляции возбудителя среди населения, отмечается феномен «бытовой» иммунизации, то есть образование иммунитета естественным путем без отмечаемого заболевания.

Поэтому, в том числе и взрослое население, вакцинировать можно и нужно только после диагностики. Диагностика это фильтр, выявляющий и отсеивающий лиц, которых не надо прививать. И таких немало… А наша система прививок снижает титры имеющихся антител и «оголяет» восприимчивых людей к последующей встрече их с дифтерией. У переболевших дифтерией в скрытой форме в виде ангин, тонзиллярных абсцессов, ОРЗ и т. д., вырабатывается иммунитет, как правило, на всю жизнь, против и токсигенных, и нетоксигенных штаммов. Но для всей этой градации необходима диагностика! + Много странного в этой «эпидемии дифтерии», но самая большая странность состоит в том, что иммунитет закончился сразу у всего взрослого населения и притом в одночасье. Еще большее удивление вызывает желание руководителей санитарно-эпидемиологической службы «победить» (в который раз!) дифтерию исключительно прививками. Прививают всех подряд, без диагностики, без определения иммуностатуса, кого надо и кого не надо, а про «нельзя – противопоказано» и речи нет. Следует сказать и о другом: нередко, если человеку после прививки вызывают «скорую», то участковый врач, выдающий листок нетрудоспособности, по указанию сверху ставит заключительный диагноз ОРЗ. Мы располагаем документом, в котором первоначальный диагноз: осложнение на АДС, а заключительный – ОРЗ… + А тем временем все идут приказы и постановления типа постановления Главного государственного санитарного врача России: «Я, Главный… постановляю…", а в этом «постановляю» есть пункт 6 – «Ввести экономическое стимулирование медицинских работников за своевременное проведение и достижение высокого уровня охвата профилактическими прививками». Экономическое стимулирование не за грамотное проведение прививок, а за… охват! За слепое выполнение плана по валовой продукции охвата!





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=67095408) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



Если текст книги отсутствует, перейдите по ссылке

Возможные причины отсутствия книги:
1. Книга снята с продаж по просьбе правообладателя
2. Книга ещё не поступила в продажу и пока недоступна для чтения

Навигация